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U.S. Energy Systemp Supply View
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US Energy System
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US Energy Systemp What will the net-zero CQ,
system look like?

Energy
sources

Energy
Users

Energy
Carriers/
Storage

Industrial
Transportation
residential

Renewables
Nuclear
Fossil Fuels

Source: Jesse Jenkins,

Princeton University / 5 GrGeorgia

&
v



H, Interactions with Gas Turbine
Performance Metrics
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Flame Temperature

Methane and Hydrogen Adiabatic Flame
Temperatures at 1 atm and a preheat of 300K
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Heating Value and Exhaust Products
(courtesy of B. Noble, EPRI)
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Cycle Effects
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EFFICIENCY AND SPECIFIC POWER
(COURTESY OF B. NOBLE, EPRI)
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EFFICIENCY AND SPECIFIC POWER
(COURTESY OF B. NOBLE, EPRI)
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EFFICIENCY AND SPECIFIC POWER
(COURTESY OF B. NOBLE, EPRI)
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EFFICIENCY AND SPECIFIC POWER
(COURTESY OF B. NOBLE, EPRI)
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Combustor Effects
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Premixed vs Non-Premixed Flames

APremixed flames

AMixture stoichiometry at flame can be
controlled

AMethod used in low NO, gas turbines

ANon-premixed flames

AFuel and air separately introduced into
combustor
AMixture burns at f =1
Ai.e., stoichiometry cannot be controlled

AHot flame, produces lots of NOx and soot (if
burning a hydrocarbon)
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Combustor/Fuel Interactions
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Combustor/Fuel Interactions
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ALow NO, /high
velocity/low pressure
make flame stabilization
more problematic
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Background:

/

On Tuesday February 26", 2008, the FRCC Bulk Power
System experienced a system disturbance initiated by a138
kV transmission system fault that remained on the system
for approximately 1.7 seconds. The fault and subsequent
delayed clearing led to the loss of approximately 2,300 MW
of load concentrated in South Florida along with the loss of
approximately 4,300 MW of generation within the Region.
Approximately 2,200 MW of under-frequency load shedding
subsequently operated and was scattered across the
peninsular part of Florida.

Indications are that six combustion turbine (CT) generators
within the Region that were operating in a lean-burn mode
(used for reducing emissions) tripped offline as result of a
phenomenon known as Aturbin
the CT generators accelerated in response to the frequency
excursion, the direct-coupled turbine compressors forced
more air into their associated combustion chambers at the
same time as the governor speed control function reduced
fuel input in response to the increase in speed. This resulted
in what is known as a CT fAb
the units to trip offline.
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